A data structure for dynamic trees
نویسندگان
چکیده
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDynamic Classification Trees for imprecise data
This paper provides a supervised classification tree-based methodology to deal with Multivalued data, specifically predictors measurements can be provided by a functional distribution or an interval of values. Main literature refers to symbolic data analysis, aiming to extend standard methods such as factorial analysis, clustering, discriminant analysis, etc., to deal with symbolic data tables....
متن کاملA Dynamic Data Structure for Checking Hyperacyclicity
We present a dynamic data structure that keeps track of an acyclic hypergraph (equivalently, a triangulated graph) and enables verifying that adding a candidate hyperedge (clique) will not break the acyclicity of the augmented hypergraph. This is a generalization of the use of Tarjan’s Union-Find data structure for maintaining acyclicity when augmenting forests, and the amortized time per opera...
متن کاملNA-Trees: A Dynamic Index for Spatial Data
In non-standard database applications, such as geographic information processing or CAD/CAM, methods of access are required that support efficient manipulation of multidimensional geometric objects on secondary storage. Spatial data consists of spatial objects made up of points, lines, regions, rectangles, surfaces, volumes, and even data of higher dimension. Being able to respond to spatial qu...
متن کاملInformation-Theoretic Data Discarding for Dynamic Trees on Data Streams
Ubiquitous automated data collection at an unprecedented scale is making available streaming, real-time information flows in a wide variety of settings, transforming both science and industry. Learning algorithms deployed in such contexts often rely on single-pass inference, where the data history is never revisited. Learning may also need to be temporally adaptive to remain up-to-date against ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1983
ISSN: 0022-0000
DOI: 10.1016/0022-0000(83)90006-5